
13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 1/15

Data Analytics - Databases and SQL

Introduction

Welcome to this database and SQL tutorial.

The Structured Query Language is somtimes seen as the most important invention; well, right after the washing machine;).

It is custom to begin with a “Hello World” example:

select "Hello World";

1 records

“Hello World”

Hello World

Now try it yourself and press Run Code . You can also Start Over or have a look at the proposed Solution .

Now try to display (with the keyword select) some basic calculations (1+2+3)*2.

SQL Code  Start Over  Solution  Run Code

1 records

“hello”

hello

select "hello"
1
2
3

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 2/15

You can concatenate strings and numbers by using ||

Now, after this little “ice-breaker,” let us start learning SQL via an example.

The aim is to build a car sales system, and gain business insights.

First, we will need customers to buy cars. Of course, we must have cars that can be sold to the customers. The sales
transactions need to be recorded as well. Hence, we need three tables: customer , car and sale .

We will use the SQLite database system and assume that an empty database exists. Note, that this tutorial will work for
almost all relational databases such as PostgreSQL and MySQL. I have also provided a similar tutorial for Access . If you
are interested in the popularity of database engines go to db-engines.com.

Table operations

We begin by creating a customer table.

Executing the above SQL command does not show anything. However, we can see the table using the sqlite_master
table. The following select query displays the customer table name.

SQL Code  Start Over  Solution  Run Code

1 records

(1+2+3)*2

12

SQL Code  Start Over  Solution  Run Code

1 records

“hello” || ” world: 1+2+3 = ” || (1+2+3)

hello world: 1+2+3 = 6

SQL Code  Start Over  Hint  Run Code

select (1+2+3)*2

select "hello" || " world: 1+2+3 = " || (1+2+3)

create table customer (info text)

1
2
3

1
2
3

1
2
3

https://en.wikipedia.org/wiki/SQLite
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/MySQL
https://smartana.org/db/
https://db-engines.com/en/ranking

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 3/15

We have not quite thought through this. Let us delete the table again.

What information do we need from a customer? Name, phone number, email and an address seem to be a reasonable
starting point. How can we identify a customer? We could use the name as identifier. However, if there are two people with
exactly the same name then there is an issue. A number to identify these individuals could resolve this. More generally
using a unique integer number to identify a record is common practice. A unique identifier for a record is known as primary
key. Note, it could be an integer number, but it could be any field (e.g. the customer’s name assuming its uniqueness). The
following SQL statement puts this all together:

Here, the field names are id, name, phone_number, email, etcetera. These are also known as column names. On the right of
each field name is a data type specifier. Here, we used int (representing whole numbers, integers) and text (representing
characters). Right next to the field id we wrote primary key . This is a constraint on the field, which means when
inserting a record a unique value needs to be provided. To summarise a field contains a field name, its data type and a
constraint.

Again, we can see the table in the master overview.

SQL Code  Start Over  Run Code

1 records

name

customer

SQL Code  Start Over  Run Code

SQL Code  Start Over  Solution  Run Code

select name from sqlite_master

drop table customer

create table customer
(
 id int primary key,
 name text,
 phone_number text,
 email text,
 address_building text,
 address_street text,
 postcode text
)

1
2
3

1
2
3

1
2
3
4
5
6
7
8
9

10

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 4/15

Insert data

Now, let us insert a bit of test data.

The above represents an entire record. A row in a table is known as record or tuple.

To verify that we have really inserted the above values we can execute the select query.

Let us insert the customers with names Dominic, Michael and spook. When inserting incomplete records (i.e. some field
values are missing) the column names (especially required fields, such as primary key) have to be specified.

View the previously inserted records.

SQL Code  Start Over  Run Code

2 records

type name tbl_name rootpage sql

table customer customer 2 CREATE TABLE customer

(id int primary key, name text, phone_number text, email text, address_building text, address_street text, postcode text) |
|index |sqlite_autoindex_customer_1 |customer | 3|NA |

SQL Code  Start Over  Run Code

SQL Code  Start Over  Solution  Run Code

1 records

id name phone_number email address_building address_street postcode

1 Wolfgang 0779… w.garn@surrey.ac.uk 20MS02 UoS GU2 7XH

SQL Code  Start Over  Run Code

select * from sqlite_master

insert into customer values
(1, 'Wolfgang','0779...','w.garn@surrey.ac.uk',
 '20MS02','UoS','GU2 7XH')

select * from customer

insert into customer (id, name)
values (2,'Dominic'),(3,'Michael'),(4,'spook')

1
2
3

1
2
3

1
2
3

1
2
3

mailto:w.garn@surrey.ac.uk

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 5/15

Changing data

Okay, we really don’t want to have a “spook” customer. So, let us remove that customer.

In order to display only the column id and name we replace the asterisk.

Here, we see the “beauty” of SQL - it is intuitive and natural: “delete from my customer table where the name is spook” (at
least somewhat natural). Important is that we used the where clause, otherwise all records would disappear.

Let us assume we need to “correct” (update) the customer with identifier 1 and add the surname “Garn.”

SQL Code  Start Over  Solution  Run Code

4 records

id name phone_number email address_building address_street postcode

1 Wolfgang 0779… w.garn@surrey.ac.uk 20MS02 UoS GU2 7XH

2 Dominic NA NA NA NA NA

3 Michael NA NA NA NA NA

4 spook NA NA NA NA NA

SQL Code  Start Over  Run Code

SQL Code  Start Over  Solution  Run Code

3 records

id name

1 Wolfgang

2 Dominic

3 Michael

SQL Code  Start Over  Run Code

select * from customer

delete from customer where name = "spook";

select id, name from customer

update customer
set name = "Wolfgang Garn"
where id = 1

1
2
3

1
2
3

1
2
3

1
2
3

mailto:w.garn@surrey.ac.uk

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 6/15

Observe the result of the update query.

Now, assume we want a new field in the customer table, which identifies the status of being a current (someone in the
middle of purchase), potential (showed some interest) or no-longer (moved on). This means we will alter (change) the table.

If we decide adding the field was not a good idea, it can be undone with alter table customer drop status .

Practice

Add the surname “Garn” to the names Michael and Dominic by using the update function twice and show your result.
Note you can comment SQL code by using -- (two hyphens and a space).

Only display the custoner name.

SQL Code  Start Over  Run Code

1 records

id name phone_number email address_building address_street postcode

1 Wolfgang 0779… w.garn@surrey.ac.uk 20MS02 UoS GU2 7XH

SQL Code  Start Over  Run Code

SQL Code  Start Over  Run Code

3 records

id name phone_number email address_building address_street postcode

1 Wolfgang 0779… w.garn@surrey.ac.uk 20MS02 UoS GU2 7XH

2 Dominic NA NA NA NA NA

3 Michael NA NA NA NA NA

SQL Code  Start Over  Solution  Run Code

select * from customer;

alter table customer
add status text

select * from customer;

1
2
3

1
2
3

1
2
3

1
2
3

mailto:w.garn@surrey.ac.uk
mailto:w.garn@surrey.ac.uk

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 7/15

Update (not insert) the status to current, no-longer and potential for customers with identifier 1, 2 and 3 respectively.

Display the id, name and status.

Car Table

Now, that we have the customer table. Let us create a car table. So, that we can sell these type of cars to customers. What
fields should we add? What car do you currently drive? How much was it? What fuel does it need? This gives us the field
names: manufacturer, model, price and fuel type. We need to decide about the data types - text seems to be fine for all but
the price column, where we will use float . Again, let us introduce the column id as primary key.

Show the car table using the sqlite_master .

Insert a few test-records.

SQL Code  Start Over  Solution  Run Code

Note : updatethreetimes,usecomments

SQL Code  Start Over  Solution  Run Code

SQL Code  Start Over  Solution  Run Code

SQL Code  Start Over  Run Code

SQL Code  Start Over  Solution  Run Code

create table car (
 id int primary key,
 manufacturer text, -- Mazda
 model text, -- CX-5
 price float, -- £27,000
 fuel_type text -- diesel
)

1
2
3

1
2
3

1
2
3

1
2
3
4
5
6
7

1
2
3

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 8/15

Insert two more records a Volkswagen - GTI with petrol, which costs £33k; and Ford - Fiesta Van with LPG, which costs
£35k.

Display all car entries:

SQL Code  Start Over  Run Code

SQL Code  Start Over  Run Code

5 records

id manufacturer model price fuel_type

1 Mazda CX-5 27000 diesel

2 Mazda MX-30 35000 electric

3 BMW i3 35000 electric

4 BMW 2 27000 petrol

5 Volkswagen e-golf 27000 electric

SQL Code  Start Over  Solution  Run Code

insert into car values
(1,'Mazda' ,'CX-5' ,27000, 'diesel'),
(2,'Mazda' ,'MX-30' ,35000, 'electric'),
(3,'BMW' ,'i3' ,35000, 'electric'),
(4,'BMW' ,'2' ,27000, 'petrol'),
(5,'Volkswagen','e-golf',27000, 'electric')

select * from car

insert into car values
(1,'Mazda' ,'CX-5' ,27000, 'diesel'),
(2,'Mazda' ,'MX-30' ,35000, 'electric'),
(3,'BMW' ,'i3' ,35000, 'electric'),
(4,'BMW' ,'2' ,27000, 'petrol'),
(5,'Volkswagen','e-golf',27000, 'electric')

1
2
3
4
5
6

1
2
3

1
2
3
4
5
6
7
8

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 9/15

Lookup Tables

In the previous table we use fuel type with several repetition. In order to avoid inconsistent spelling (e.g. electric,
electrical or Electric). We could introduce a lookup table.

 create table fuel (type text primary key)

A lookup table only has one field, which is a primary key. Let us insert the lookup values:

insert into fuel

values ('diesel'),('electric'),('petrol'),('LPG')

Display the table:

Foreign keys

Now the interesting part is, how do we “link” the fuel table with the car table. Obviously, it needs to be done using the
common fields car.fuel_type and fuel.type .

By default, foreign keys are disabled in SQLite. hence, we need to enable them.

SQL Code  Start Over  Solution  Run Code

5 records

id manufacturer model price fuel_type

1 Mazda CX-5 27000 diesel

2 Mazda MX-30 35000 electric

3 BMW i3 35000 electric

4 BMW 2 27000 petrol

5 Volkswagen e-golf 27000 electric

SQL Code  Start Over  Solution  Run Code

4 records

type

diesel

electric

petrol

LPG

select * from car

select * from fuel

1

1
2
3

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 10/15

PRAGMA foreign_keys = ON;

We can check that the foreign keys functionality is on:

PRAGMA foreign_keys;

1 records

foreign_keys

1

The easiest way is to drop the table car and and create it again with a foreign key. Note, in other database systems
(e.g. postgreSQL) you would do: alter table car add constraint constraint_fuel_type
foreign key (fuel_type) references fuel(type) on update cascade;

dbCT_car(con)

[1] 0

drop table car

create table car (

 id int primary key,

 manufacturer text, model text, price float,

 fuel_type text REFERENCES fuel(type) ON UPDATE CASCADE

 -- foreign key (fuel_type) references fuel(type)

)

We need to insert the data again.

insert into car values

(1,'Mazda' ,'CX-5' ,27000, 'diesel'),

(2,'Mazda' ,'MX-30' ,35000, 'electric'),

(3,'BMW' ,'i3' ,35000, 'electric'),

(4,'BMW' ,'2' ,27000, 'petrol'),

(5,'Volkswagen','e-golf',27000, 'electric'),

(6,'Volkswagen','GTI' ,33000, 'petrol'),

(7,'Fiesta Van','Ford' ,35000, 'LPG')

Benefiting from a lookup table

Let us change the fuel type diesel to Diesel in the lookup table.

update fuel set type='Diesel' where type = 'diesel'

Observe the updated value in the fuel table.

select * from fuel

4 records

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 11/15

typetype

Diesel

electric

petrol

LPG

Did it update in the car table automatically?

However, note that you cannot update the fuel_type in the car table:
update car set fuel_type='Electric' where fuel_type = 'electric' will through an error message.

Practice

Create a lookup table for the customer status.

create table customer_status

 (status text primary key)

Insert the values: current, potential and no-longer.

insert into customer_status

values ('current'), ('potential'), ('no-longer')

Dropping (e.g. alter table customer drop column status) or adding a constraint the current status column in the
customer table, works for most database systems. However, SQLite does not support this. Hence, we drop the entire table

and recreate it.

create table customer

(

 id int primary key,

 name text,
 phone_number text,

 email text,

 address_building text,

 address_street text,

 postcode text,

 status text REFERENCES customer_status(status) ON UPDATE CASCADE

)

Now we insert the test data one more time.

SQL Code  Start Over  Solution  Run Code

SQL Code  Start Over  Run Code

drop table customer

1
2
3

1
2
3

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 12/15

insert into customer values

(1, 'Wolfgang','0779...','w.garn@surrey.ac.uk','20MS02','UoS','GU2 7XH','current'),

(2, 'Dominic','','','','','','no-longer'),

(3, 'Michael','','','','','','potential')

select id, name, status from customer

3 records

id name status

1 Wolfgang current

2 Dominic no-longer

3 Michael potential

Now, we have the customer and car table. Both, are linked to a lookup table via the foreign keys status and fuel_type
respectively.

Sale Table

Next, we’d like to create a table for the sales. This table will need a foreign key to the customer table and another one to link
to the car table. What other sale’s information do we need. The date of the sale would be definitely good. A quantity field
would be good assuming a car record represents “unlimited” supply of this type of car. Let us assume - for simplicity - that
the price in the car table is a fixed retail price.

create table sale (

 id int, -- sale id

 customer_id int REFERENCES customer(id) ON UPDATE CASCADE,

 car_id int REFERENCES car(id) ON UPDATE CASCADE,

 sale_date text,

 quantity int

)

Note, SQLite does not have a specific data type for date/time, but text , real and int can be used (see
sqlitetutorial.net/sqlite-date for examples).

Let us add three records to the sale-table. Let us say say Wolfgang purchased a BMW i3 on the 2nd of March 2021, and
bought a Mazda CX-5 on 17th November 2014. Dominic bought a GTI on the 15th of August 2020.

 insert into sale values

 (1, 1, 1, '2014-11-17 10:00:00.0',1),

 (2, 1, 3, '2021-03-02 11:00:00.0',1),

 (3, 2, 6, '2020-08-15 17:00:00.0',1)

 select * from sale

3 records

id customer_id car_id sale_date quantity

1 1 1 2014-11-17 10:00:00.0 1

2 1 3 2021-03-02 11:00:00.0 1

https://www.sqlitetutorial.net/sqlite-date/

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 13/15

id customer_id car_id sale_date quantity

3 2 6 2020-08-15 17:00:00.0 1

Queries

Now, it would be great to display the following information: all the sale records but with customer name, manufacturer,
model and sale’s date. This means we have to collect the information from the customer, car and sale table.

select name, manufacturer, model, sale_date

from customer, car, sale

where sale.customer_id = customer.id and

 sale.car_id = car.id

3 records

name manufacturer model sale_date

Wolfgang Mazda CX-5 2014-11-17 10:00:00.0

Wolfgang BMW i3 2021-03-02 11:00:00.0

Dominic Volkswagen GTI 2020-08-15 17:00:00.0

The function strftime('%Y-%m-%d %H:%M:%S', ...) can be used to extract any specific date/time information. date
and time are two more useful functions.

Now, that we have built a basic car-sales-system it is time to operate it. Okay, some time has passed and the tables have
been filled with some data.

Operational Queries

What operational queries would be good to know? How to find a customer record (phone number ,email) by knowing
“roughly” the name? How to insert a new type of car? We have done that before. How to add a new customer or sale record.
Again we have done that.

So, let us find the customer which contains the characters “Wolf.”

Business Insight Queries

What business insights would be interesting? How much revenue have we generated? Which cars are the top sellers?

For the revenue we need the car retail price and the quantity sold.

SQL Code  Start Over  Run Code

1 records

name email phone_number

Wolfgang w.garn@surrey.ac.uk 0779…

select name, email, phone_number from customer
where name like '%Wolf%'

1
2
3

mailto:w.garn@surrey.ac.uk

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 14/15

select price, quantity

from car, sale

where sale.car_id = car.id

3 records

price quantity

27000 1

35000 1

33000 1

The total revenue is:

select sum (price* quantity) as revenue

from car, sale

where sale.car_id = car.id

1 records

revenue

95000

Which cars are the top sellers?

select manufacturer, model, sum(quantity) as nb

from car, sale

where sale.car_id = car.id

group by manufacturer, model

order by nb desc

3 records

manufacturer model nb

BMW i3 1

Mazda CX-5 1

Volkswagen GTI 1

Summary

We introduced fundamental SQL statements by building a car-sales-system and showing how to use it. Concepts such as
creating a table, inserting and updating its data were introduced. Simple queries and aggregates were mentioned.

Resources

w3schools.com is a great systematic introduction into SQL.
Shah (2020) is a hands-on introduction to data science (Chapter 7 introduces MySQL).

https://www.w3schools.com/sql/default.asp

13/01/2022, 10:47 Data Analytics - Databases and SQL

127.0.0.1:4624/da-sql.Rmd#section-introduction 15/15

Acknowledgment

This tutorial was created using RStudio, R, rmarkdown, and many other tools and libraries. The packages learnr and
gradethis were particularly useful. I’m very grateful to Prof. Andy Field for sharing his disovr package, which allowed

me to improve the style of this tutorial and get more familiar with learnr . Allison Horst wrote a very instructive blog
“Teach R with learnr: a powerful tool for remote teaching”, which encouraged me to continue with learnr . By the way, I
find her statistic illustrations amazing. Irene Steves’ tutorial is great for learning how to use SQL in RStudio.

References

Shah, Chirag. 2020. A Hands-on Introduction to Data Science. Cambridge University Press.

https://profiles.sussex.ac.uk/p9846-andy-field
https://github.com/profandyfield/discovr
https://www.allisonhorst.com/
https://education.rstudio.com/blog/2020/05/learnr-for-remote/
https://github.com/allisonhorst/stats-illustrations
https://irene.rbind.io/post/using-sql-in-rstudio/

